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ABSTRACT

- Progressive failure is a crucial concern when using laminated composites in structural
design. Therefore the ability to model damage and predict the life of laminated composites
is vital. The purpose of this research was to experimentally verify the application of the
continuum damage model, a progressive failure theory utilizing continuum damage
mechanics, to a toughened material system. Damage due to tension-tension fatigue was
documented for the IM7/5260 composite laminates. Crack density and delamination
surface area were used to calculate matrix cracking and delamination internal state variables,
respectively, to predict stiffness loss. A damage dependent finite element code qualitatively
predicted trends in transverse matrix cracking, axial splits, and local stress-strain
distributions for notched quasi-isotropic laminates. The predictions were similar to the
experimental data and it was concluded that the continuum damage model provided a good
prediction of stiffness loss while qualitatively predicting damage growth in notched

laminates.



INTRODUCTION
Background Information

Because of their light weight and high specific stiffness, laminated continuous fiber-
reinforced composite materials are in high demand for use in primary load bearing
components in aircraft structures. However, when subjected to high service loads,
environmental attack, curing processes, impact, or a combination of any or all of the above,
laminated composite materials develop microstructural damage. As service load or the time
in service increases, microstructural damage develops into more severe damage and finally
into catastrophic failure.

There are four main types of material damage. These are matrix cracking, fiber-matrix
interface debonding, delamination, and fiber fracture. Usually, matrix cracking and fiber-
matrix interface debonding are the first forms of damage to occur, followed by
delamination, and finally fiber fracture resulting in catastrophic failure. While matrix
cracking is usually arrested at the fibers or adjacent plies, microstructural damage will result
in a redistribution of load to the surrounding regions. As a result, these surrounding
regions contain stress fields which are favorable to initiation and propagation of additional
damage. During the accumulation of subcritical damage, degradation of material stiffness
and strength results from the load redistribution and decrease in load paths until the load
paths are unable to support the load, in which case, catastrophic failure occurs.

The initiation and propagation of microstructural damage is one of the problems facing
the designer of laminated continuous fiber composite structures. There is a need to model
the damage and predict the residual strength and life of composite structures to address
durability and damage tolerance requirements. For example, one of the most intriguing and
complicated structural configurations is that of laminated composite structures connected by
mechanical fasteners such as rivets. These laminates with fastener holes develop stress
concentrations that cannot be easily treated using stress concentration factors as is the case
with homogeneous metals. As another example, the non-visible damage that develops
during foreign object impacts and ground handling accidents must be accounted for in the
design. Current methods for treating these local structural details are empirical and very
conservative. Therefore, an accurate model of the damage initiation and propagation is

necessary to predict the failure of composite structures.

Literatur 1rv

The occurrence of damage and how it affects the strength and life of laminated
composites has been the subject of much research for the past two decades. Many models
have been proposed and developed for modelling damage growth and predicting reductions



in strength and stiffness in composite laminates. There are two main topics of this literature
survey. The first topic covers general theories and research on the propagation of matrix
cracks and delaminations. The models discussed under this topic are studies of the
occurrence and effects of damage and include fracture mechanics related studies and
mathematical models for predicting damage initiation and growth. The second topic covers
various internal state variable approaches. This approach represents the distributed damage
as volume averaged quantities. The treatment of a damaged volume of material as a
continuous medium and the representation of the damage with averaged quantities was first
proposed by Kachanov in 1958 [ 1 ] and is referred to as Continuum Damage Mechanics.
Fracture mechanics differs from damage mechanics in that fracture mechanics treats a crack
as a boundary of the body of interest, whereas damage mechanics includes the effects of
cracks in constitutive equations rather than in boundary conditions.

Much research has been done experimentally and analytically to characterize damage
in laminated composites. Masters and Reifsnider [2] conducted an investigation of
cumulative damage in quasi-isotropic laminates. Highsmith and Reifsnider [3] studied
reductions in stiffness due to matrix cracking and interply delaminations., and Garg [4]
discussed the state of the art of delamination behavior. A few of the aspects considered in
Garg's paper are: causes of delamination and its effect on structural performance, analytical
and experimental techniques to predict its behavior, and preventive measures to delay
delamination so as to make a structure more damage tolerant. The shear lag model, utilized
by Highsmith to predict stiffness reductions in various composite laminates, assumes that
the far-field stresses transfer to the cracked layer from the adjacent layers via shear
deformation of a thin boundary layer at the layer interface. This particular model is
relatively easy to use and provides results that agree with the experimental data. Because
some laminates delaminate only in cyclic loading, extensive research has been done to
characterize delaminations due to fatigue. Tsai, et al. [5] have investigated the effects of
fatigue loading on the life and resulting damage in composite laminates. O'Brien [6] has
developed a strain based initiation criterion and strain energy release rate equations for
delaminations. Research such as these have provided the tools and insight needed to
develop models and damage growth laws to model damage growth and predict reductions
in stiffness and strength of laminated composites. In the strain energy method, the
displacement fields in a unit cell representing a body with aligned cracks is expanded in
Legendre polynomials. Utilizing this model, Aboudi [7] calculated the degraded stiffness
tensor from the elastic energy stored in the cracked body. Aboudi's model requires higher
order Legendre polynomials to improve accuracy, but overall, the model gives reasonable

predictions. Hashin's model [8] is based upon the principle of minimum complimentary



energy. Hashin uses this method to calculate ply level stresses and the reductions in
stiffness. Even though his solutions are very accurate when analyzing [0,/90p]s laminates,
difficulties arise when the model is applied to multi-layered laminates of the type
[02/90p/0c/90g]s. A stochastic model for the growth of matrix cracks in composite
laminates has been developed by Wang, Chou, and Lei [9]. This model replaces the
conventional ply strength criterion with an effective flaws concept. It is also based on the
concepts of classical fracture mechanics. The effective flaw concept is a conceptual
property of the material ply which enables a gross representation of the actual effects of
inherent material flaws. This particular model provides a reasonably reliable method for
modelling the static and fatigue growth processes of 90 degree ply transverse cracks in
cross-ply laminates loaded in tension. Tan and Nuismer [10] model progressive matrix
cracking of composite laminates that contain a cracked 90 degree ply and subjected to
uniaxial tensile or shear loading. This theory includes two parts, i.e. an approximate stress
analysis using elasticity theory and a failure criterion based on the energy balance
consideration. Awerbuch, et al. [11], applied an acoustic emission technique to detect and
locate damage initiation, monitor its progression and accumulation, and to identify the
major modes of damage associated with the failure process in cross-ply graphite epoxy
laminates. Residual degradation models for composites were developed by Yang [12] and
Rotem [13]. Yang has developed a fatigue residual strength degradation model to account
for the effect of tension-compression fatigue loading. Furthermore, this model can be used
to predict the effect of high loads, such as proof loads, on the fatigue behavior of
composites as evidenced by a limited amount of test data [14]. Rotem's theory for residual
strength is based on cumulative damage theory and it predicts that the static strength of the
laminate is maintained almost to the final failure by fatigue.

Other damage theories consist of models using internal state variables. Weitsman
[15] proposed a mathematical formulation for the modelling of damage in fiber-reinforced
composite materials due to moisture and temperature. Damage was observed to occur as
profuse micro-cracking at the fiber/matrix interfaces and as matrix cracking traversing the
entire plies. In his work, the moisture-absorbing composite material is treated as a
thermodynamically open system and the distributed, micro-mechanical damage is
represented as an internal state variable. In addition, general forms of damage growth laws
are derived for isotropic and transversely isotropic composites. Talreja [16,17,18]
characterized cracks in composite laminates by a set of vectors, each representing an
individual cracking mode. The vector components are taken as internal state variables in
the elastic strain energy function and the elastic constitutive equations are derived for the in-
plane loading condition. For low concentration of cracks in laminates, the residual



stiffness properties are related to the initial elastic constants and the magnitude of the
damage vectors. These equations are then used to predict stiffness reductions of composite
laminates from the observed crack densities. Other theories utilizing the concept of damage
as an internal state variable were developed by Miner [19], Hashin and Rotem [20],
Coleman and Gurun [21], Bodner [22], and Krajcinovic [23].

In summary, many methods are currently being studied to model damage and predict
life. There are some methods that consider each crack as an internal boundary and the
stress or displacement fields are obtained either in closed form or numerically, such as in
finite elements. This approach works well as long as there are a relatively small number of
flaws. However, as crack density (number of cracks per ply per inch) increases, these
methods become quite cumbersome because the finite element solution may require such a
high number of elements that it becomes computationally impossible. Other methods, such
as phenomenological approaches, have also been used in the analysis of damage evolution
in laminated composites. The problem with these approaches is that they are so dependent
on stacking sequence, loading history, and component geometry, that such a large amount
of experimental data would be needed to be useful. Therefore, these approaches are not
very practical either. An alternative to these approaches is the continuum damage model.
This model is also phenomenological, however, it is formulated at the ply and sublaminate
level and is therefore independent of stacking sequence or geometry.

Once again, it should be kept in mind that Kachanov developed the original concept in
the 1950's to model the creep behavior of brittle metals. The continuum damage model has
been extended to composites to model the behavior of a brittle epoxy material system to
predict stiffness loss due to damage, shear modulus over a period of fatigue, and damage
dependent stresses. The model utilized empirical formulations for the damage variables and
a damage growth law for transverse matrix cracking [24,25]. Furthermore, a FORTRAN
code consisting of constitutive laws, classical laminate theory (CLT), and a damage growth
law for transverse matrix cracking was written to perform a fatigue analysis on composite
laminates. The program is called FLAMSTR (Fatigue LAMinate STRess) [ 26 ]. Itis
capable of simulating tension-tension fatigue over a number of cycles while quantifying and

updating the damage state via internal state variables.

jectiv nd Approach

The goal of this research is to experimentally verify the application of the continuum
damage model, developed by Allen, Harris, and Groves [27, 28], to a toughened material
system, unlike the brittle epoxy material used to develop the model. To achieve this goal
several objectives must be met in order to successfully use this model and provide valuable



information to the already existing progressive failure theories. The first objective is to
document damage for the IM7/5260 material system. This will allow others to visually
inspect the patterns of damage and will aide in verifying the experimental and analytical
results of this thesis. The second objective is to document stiffness and strength as a
function of fatigue damage. These results are very important because they will not only
aide in evaluating the analytical results, but will also provide valuable information about the
mechanics and properties of this particular material. The third objective is to determine the
growth law parameters which will be used to predict stiffness loss for cross-ply and quasi-
isotropic laminates. The fourth objective is to predict stiffness loss in quasi-isotropic
laminates with centrally drilled holes and predict residual strength of the quasi-isotropic
laminates with and without holes.

MODEL THEORY
Representation of Damage

In previous research [31, 32], internal damage is quantified by degradation of the
material stiffness, whereas the continuum damage model measures matrix cracking by the
volume averaged dyadic product of the crack face displacement, u;, and the crack face
normal, nj, as defined by Vakulenko and Kachanov [1],

M1
o =V—jufnfds (1)
Ls

where O‘ihz is the second order tensor internal state variable, Vi is the local representative
volume, and S is the crack surface area. This product can be interpreted as additional
strains incurred by the material as a result of the internal damage. Therefore the elemental
matrices do not need to be updated as damage accumulates since the effects of the internal
damage appears in the equilibrium equations as "damage induced forces". A more detailed
description of the internal state variable and its applications can be found in the
published literature [24-30, 33, 36].

The internal state variable demonstrates its usefulness in the micromechanics derived

ply level (stacking sequence independent) constitutive equations as shown [24],

(ou) = [Q] {e- o ) (2)



where {O]} are the locally averaged components of stress, [Q] is the ply level transformed
M
stiffness matrix, €[, are the locally averaged components of strain, and &_ are the

components of the internal state variable for matrix cracking. The effects of interlaminar
delaminations cannot be homogenized at the ply level as can be done for matrix cracks.
Detailed descriptions of damage dependent lamination equations can be found in the
published literature [25, 26, 34].

The continuum damage model uses damage evolution equations [26, 30] to determine
the internal state variables for the matrix cracks and empirical formulas where delaminations
are concerned. The predominant type of damage for a uniaxially loaded composite laminate
is the mode I opening intraply matrix crack. For this mode of damage only one component
of the damage tensor, Op2, needs to be utilized for characterizing matrix damage in each
ply [25, 26]. Whereas a damage evolutionary relationship has not been developed for
delaminations, a damage growth law has been developed for mode I damage where the
displacement of the crack face is in a direction parallel to the crack face normal, i.e.
perpendicular to the plane formed by the ply. Equation (3) is the proposed [26, 30]

damage growth law for uniaxial cyclic loading,

M
M da22
azzz dS KG“ dN (3)

g
where ~gg  describes the change in the internal state variable for a certain change in crack
surface area, x and 1 are material dependent parameters, N is the number of load cycles,
and G is the damage dependent strain energy release rate for the ply of interest. This strain
energy release rate is calculated from the following equation [25, 26],

M dok]
G= VL Cijkl(Eij - aij ds (4)

Evolutionary relationships for other matrix cracking internal state variable components and
for delamination damage are under development. In developing the continuum damage
model up to this point, several assumptions were made and verified in previous research.
The first of these assumptions standardizes transverse matrix cracking. Itis assumed that a
transverse matrix crack appears through the entire width of the laminate instantaneously



[25, 29, 30]. This implies that a crack seen on one edge of a laminate extends to the other
edge and appears as an edge crack on the other side of the laminate. Therefore, the crack
surface area of one crack could be expressed by [1, 24, 25, 27, 28]

s = (2 crack faces)(ply thickness)(laminate width)  (5)

where s is the crack surface area. Without this assumption, a crack seen on the edge of a
laminate gives no indication of the crack surface area. Another assumption previously
made when developing this model with AS4/3502 was that the material is elastic [27, 28,
30]. Therefore it has no plastic deformation that would hinder or enhance damage growth.
For a uniaxially loaded quasi-isotropic laminate, mode II damage due to shear is
considered. The following relationship [ 25 ] provides an empirical formula with which to

. ) M
calculate the internal state variable due to shear, o ,

M
aa*] 2 — 2{1 (G12)exp\ Sm (6)
8812 G120 jSexp

where (G12)exp and Sexp refer to the experimental shear modulus and crack density
respectively. Gjog is the undamaged shear modulus and Sy, is the crack density for any
given cycle.

In addition, mode I damage due to delamination is also considered for uniaxially loaded
quasi-isotropic laminates. The following relationship [ 25 ] provides an empirical formula
with which to calculate the internal state variable due to delamination

aa3D = n (EXO'E‘) (i) (7)
asx 2 015 S

where Ey, is the undamaged experimental stiffness and E* is the moduli of the
sublaminates formed by delamination. Furthermore, n is the total number of plies, Sp is
the delamination surface area, and S is the total surface area. Qs is defined in the

following equation
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where Qfl and Q1131 are the stiffnesses of the two sublaminates formed by regions of

delamination.

Progressive Failur hem

A progressive failure scheme of the continuum damage model is used here to illustrate
the application of the internal state variable and list the experimentally obtained inputs
needed for the constitutive code. The progressive failure scheme can be thought of as an
explanation of how the continuum damage model predicts the following:

1. Matrix crack accumulation in 90 and 45 degree plies of quasi-isotropic laminates.

(a) Constitutive code for unnotched laminates using classical laminate theory

(b) Plate code for notched laminates using finite element methods
2. Ex, Ey, Gxy, and Nyy as functions of matrix crack damage for unnotched laminates

using classical laminate theory.

3. First fiber failure in unnotched and notched quasi-isotropic and cross-ply laminates
using classical laminate theory and finite element methods.
The progressive failure scheme is illustrated in Figure 1. The first block briefly describes
the information needed as model input. It illustrates that we need to know the loading
condition, structural configuration, and the current damage state from impact, curing,
environmental induced damage, etc. This damage state is represented by material
parameters K and 1 of the matrix damage growth law, the change in the i.s.v. with respect
to crack surface area, and the change in the i.s.v. with respect to number of cycles. Table 1
lists the input parameters in detail. These are obtained from experimentation and 1.s.v.
calculations, all of which will be explained in detail within the Model Parameter Calculation
section of Analytical Results.

Blocks 2 and 3 in Figure 1 are known as the first constitutive module. This constitutive
module performs a damage dependent laminate analysis utilizing equation (2) to produce
effective lamina and laminate properties.

Block 4 is a finite element analysis code which utilizes the damage dependent lamina
and laminate properties as input for the elemental stiffness matrix for the modified

equilibrium equations [34].
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where [K] = element stiffness matrix (input), {F} = applied force vector (input), {F}m
and {F}p = "damage induced" force vectors resulting from matrix cracks and delaminations
respectively.

The global structural analysis uses 3 node triangular elements with 5 degrees of freedom at
each node; two in-plane displacements (u ), one out-of-plane displacement (v), and two
out-of-plane rotations (8). The "damage induced" force vectors provide the continuum
damage model with an advantage over other models. As mentioned under Representation
of Damage, previous models quantify internal damage by stiffness degradation, thus
having to recalculate the stiffness matrix in the finite element code at every change in
damage state. However, using the internal state variable as a description of the damage
state, the continuum damage model allows the internal damage to appear in the modified
equilibrium equations as "damage induced forces". Therefore the elemental stiffness matrix
does not have to be recalculated each time damage changes.

Now that the elemental displacements, curvatures, and stresses have been obtained
from the first constitutive module and the finite element code, they become input into the
second constitutive module, a local material level analysis (ply level elemental stress
analysis), which reflects the current damage state. The local strain energy release rate is
also computed and is used in block 6, damage evolution calculations, to determine new
damage growth. This damage growth is evaluated in block 7 and a failure criterion
then determines if the laminate has failed. An excellent guide in using the continuum
damage model has been published as a NASA Technical Memorandum [26]. Tt provides
information on the model's development, inputs needed for the model, experimentally
determining the internal state variables, and provides sample input and output files for the

constitutive code.
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EXPERIMENTAL PROCEDURE
Specimen Preparation_and Properties

The material system used in this research to verify the life predicting capabilities of the

continuum damage model is IM7/5260. The laminates were manufactured, post cured, and
machined into ten inch long specimens at NASA Langley Research Center. Table 2 shows
the sizes and layups of the specimens and the data to be obtained from each specimen.

The laminate plates were machined into individual specimens and the edges were
polished so that edge replicas could be obtained to document matrix crack formation. X-
ray radiography and specimen sectioning were also used to determine whether or not cracks
extended fully across the specimen width,

Before testing, a classical laminate theory (CLT) code and the Tsai-Wu failure criterion
were used to predict engineering properties and failure loads of the IM7/5260 specimens.
First ply failure is the load at which the first matrix cracks appear. If we know this load,
we can fatigue the specimens at a certain percentage of first ply failure load so that the
fatigue tests will run for a moderate number of cycles and generate a representative
distribution of matrix cracks over a wide range of fatigue cycles.

Other than non-uniform matrix cracking under static loading, the modulus and failure
loads were close to the values predicted by the CLT. The ply level properties used in the
CLT code are shown in Table 3 [35]. In Table 4, the components of the stacking sequence
independent, ply level transformed stiffness matrix, [Q] from Equation 2, were calculated
by applying the ply level properties from Table 3 to the transformed (or reduced) stiffness
equations [36]. Tables 5, 6,7, and 8 are comparisons of CLT predicted values with
experimental values for the IM7/5260 specimens.

Testing Equipment And Procedure

The machine used to test the first half of the specimens was an MTS machine with an
MTS 436 control unit, an MTS 430 digital indicator, and an MTS 410 Digital Function
Generator. The data acquisition unit used was a Nicolet 4094 A Digital Oscilloscope with a
XF-44 Double Disk Recorder. A bridge amplifier and meter was used to amplify the signal
from the Interlaken clip gauge extensometer to the Nicolet. The second half of the
specimens were tested using an Instron 8502 machine with an Instron 8500 controller.
Furthermore, most of the useful strain data was obtained using the Instron's linear voltage
displacement transducer (LVDT).

Initially, a frequency of 1 Hz, a maximum load of 75% first fiber failure, and an R
value of 0.1 were chosen for the tension-tension fatigue test. After testing a few practice
specimens, it was decided that a frequency of 5 Hz was a better frequency for the tension-
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tension fatigue tests. This was decided because any frequency below 5 Hz would require
too much time for one test, and frequencies above 5 Hz sometimes developed overshoot
and undershoot inaccuracies for the test machine actuator. Furthermore, specimens with 45
degree plies would increase in temperature at frequencies over 5 Hz; this might affect the
material properties. Additionally, a maximum load of approximately 30% catastrophic
failure (80% of first ply failure) was decided for the [0/90/0]s, [0/90,/0]s, and [45/-45]7
specimens because any load over that caused crack saturation too early in the fatigue life to
obtain a decent development in crack density as a function of fatigue cycles. Other layups
were fatigued at approximately 60% catastrophic failure to obtain more extensive damage.
The next step was to conduct the fatigue testing. In general the procedure is to subject
the specimen to tension-tension fatigue loading, periodically stopping to take edge replicas
and x-rays, and measure stiffness. For the cross-ply laminates special attention is given to
accurately obtaining crack density (or crack surface area) since the model parameters are
calculated primarily from crack density of the cross-ply laminates. Furthermore, accurate
stiffness measurements are needed to evaluate the stiffness loss predictions of the cross-ply
laminates. For the [45/-45] specimens the main objective here is to calculate shear
modulus as a function of damage. Therefore, measuring longitudinal and transverse
stiffness as damage increases is high in priority. As for the quasi-isotropic laminates with
and without centrally drilled 6.35 mm diameter holes, special attention was given to
measuring stiffness loss as well as failure strength at a designated cycle number. This is
for the purpose of comparing experimental stiffness loss and residual strength to the model

predictions.

Data Acquisition

Most of the stiffness measurements utilized the Interlaken extensometer and bridge
amplifier for signal amplification. Once the initial longitudinal modulus known as E;, was
established, the specimen was subject to tension-tension fatigue for about 100 to 1,000
cycles. At this point, several more stiffness measurements were made and averaged as
before. This procedure continued until approximately 100,000 cycles where crack density
was approximately saturated.

This procedure worked well for most all of the laminates, except the [0/90/0]
laminates. The stiffness measurements for these laminates showed random fluctuations
between decreases and increases in stiffness. One reason for this is that the [0/90/0]
specimen is two plies thinner than the other laminates. With each ply being only 0.1524
mm thick, it is possible the extensometer, extensometer tabs, and the epoxy used to fasten
the tabs to the specimen added additional stiffness to the specimen. Another possibility is

12



that the extensometer used may not be accurate enough to detect very slight changes in
stiffness, and the data that was actually being recorded as fluctuations in stiffness may
actually have been within the scatterband of the extensometer. This is not to say that the
extensometer is not accurate, but that it is only accurate within its 2.54 cm gauge length.
Since the [0/90/0] laminates have only two ninety degree plies for every four zero degree
plies, and all of the damage happening in the ninety degree plies, these laminates will see a
very slight reduction in stiffness anyway. Furthermore, with a gauge length of only 2.54
cm, this is significant because if very little damage occurred in this one inch gauge length, it
would be impossible to detect any reductions in stiffness. This was later confirmed in x-
rays of specimens used for stiffness measurements. The x-rays showed very little damage
within the gauge length and some specimens seemed to have not damaged at all. With
these explanations in mind, it seemed reasonable to decide to solve this problem by using
the LVDT of the Instron 8502.

Using an LVDT would allow for a gauge length of more than 15.24 cm which is
basically the distance from one hydraulic grip to another. Therefore, even if damage isn't
evenly distributed along the length of the laminate, if there is damage, reductions in
stiffness due to damage is detectable. Furthermore, using the LVDT was accurate to
0.0025 mm and the average displacement of the actuator during a test was approximately
0.7938 mm.

Fortunately, measuring residual strength posed no problems. The procedure was
simply to fatigue the specimen to the cycle at which the value of strength is desired and load
the laminate in monotonic tension until failure. The failure strength is then calculated by
dividing the failure load by the gross cross-sectional area. Measuring crack density, thus
measuring crack surface area, seems like a simple, straight-forward, problem-free task.
Basically, the procedure here is to periodically take edge replicas at the same number of
cycles that stiffness measurements were taken. After fatiguing a laminate for a certain
number of cycles, the load was ramped to approximately 80% of its maximum load at
which point the edge replica was taken. The cracks in the ninety degree plies showed up
very well, and for each replica taken, crack density was calculated. The formulas for the

ply level crack density and crack surface area are, respectively,

# of cracks/ply/inch length (10)

p
s

ptw(2 crack faces) (11)

where p is the crack density, t is the ply thickness, and w is the laminate width. However,
the IM7/5260 laminates did not behave such that these simple formulas gave an accurate
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computation of the crack surface area determined from cracks shown on the edge replica. It
was later found that the cracks did not traverse through the entire width of the specimen as
is the case with brittle epoxies. Therefore, another way of obtaining crack surface area had
to be devised. Instead of counting cracks on the edge replicas, x-rays magnified at 48x
were used to count each crack and note whether or not it traversed 100%, 75%, 50%, or
25% of the specimens entire width, i.e. the laminate width in Equation 11 is now replaced
with a percentage of the laminate width. An x-ray radiograph of a cross-ply laminate is
represented in Figure 2. Illustrated here is the method by which the percentage of cracks
are added together to obtain a total number of cracks. This was a very tedious, but
necessary procedure. For only after obtaining a more accurate account of damage could
Equations 10 and 11 be used. This should be a warning to all who use this model, that
before spending time and effort taking replicas and counting the cracks, x-rays should be
used very regularly during a fatigue test to examine how damage initiates and progresses.
This problem is discussed in detail in the following section.

EXPERIMENTAL RESULTS
Damage Quantification

Recalling from the previous section, extracting crack density from the cross-ply
laminates using edge replicas posed a slight problem. It was noticed that the calculated
crack surface areas were rather large and caused some analytical problems when trying to
calculate the model parameters. After examining the Figures 3 thru 10, it was concluded
that the matrix cracks propagate inward rather than immediately traverse the entire width of
the specimen. This matrix crack propagation as the fatigue cycles increase is illustrated in
Figures 3, 4, 5, and 9 (a) and (b). The ninety degree matrix cracks starting from the edge
of the specimen and progressing inward are illustrated in Figures 3, 4, and 5. Further
examination consisted of sectioning several laminates and counting the cracks via edge
replicas. The sectioning location for [0/90,/0] laminates that were fatigued to 50,000 and
200,000 cycles are illustrated in Figures 4 and 5. Provided in Figure 6 is the crack count at
each section of the laminate fatigued to 50,000 cycles and illustrates the fact that all the
cracks do not continue through the width of the specimen. The laminate fatigued to
200,000 cycles in Figure 7 is an example of how the cracks eventually progress through
the width and saturate the laminate. However, this particular chart still shows that not all of
the cracks are through the entire width of the specimen. As we move from the edge 0.318
cm inward to section BB, the number of cracks decreases. At section CC, 0.584 cm
inward from the edge, cracks from the other edge have progressed to this point. Finally, as
we travel closer to the center, the cracks from the edges decrease. Provided in Figure 8 are
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the crack counts from edge replicas of a [0/90/0]g laminate that was fatigued and sectioned
at 200,000 cycles. It appears that the [0/90/0]s laminates reach crack saturation at a higher
cycle than do the [0/902/0]s laminates. Furthermore, Figure 9 (a) and (b), x-ray
radiographs of [45/-45]5¢ laminates, and Figure 10 again confirm that the cracks slowly
propagate inward. Hence, the assumption that the cracks seen on the edge of the specimen
via edge replicas are cracks which exist through the entire width of the specimen is not a
valid assumption for this material system. Instead, the only way to determine crack density
is to use the x-rays and measure crack surface area as discussed in the Data Acquisition
section of the previous chapter. However, this is still only an approximation since an x-ray
does not verify which ply each crack is in. That is, what may appear as one crack may
really be two. Therefore, for the sake of consistency, some assumptions were made to
help extract reasonable crack surface areas from the x-rays. For the [0/90/0]s laminates, it
was assumed that for every entire crack or partial crack seen in the x-ray, there exist just
that one entire or partial crack. However, as the ninety degree plies increase in number,
this assumption becomes invalid, especially when there are consecutive ninety degree plies
such as in the [0/90,/0] laminate. The assumption for this particular laminate is that for
every entire or partial crack seen in the x-ray, there exist just two entire or partial cracks. It
is now obvious how this material system can create a formidable task in obtaining crack
density as the number of ninety degree plies in the laminates increase. Illustrated in Figure
11 is the significant difference in calculating crack density from edge replicas to the more
accurate approximation of using the x-rays. This method worked well for the [0/90/0]5
laminates, however the number of cracks in the [0/902/0]s laminates became virtually
impossible to count after damage increased to a certain level. Cracks started merging and
created a blur of damage. Illustrated in Figures 12 (a) and (b) are the transverse matrix
cracks in ninety degree plies as seen from the edge. Aside from the matrix cracks
progressing from the outer edge of the laminate towards the center, Figure 12 (a) illustrates
the anomaly of a crack initiating near the outer edge of the ply and progressing inward.

Cases of non-uniform matrix cracking was seen predominantly in the [45/-45]2
laminates. X-ray radiographs, Figures 9 (a) and (b), of laminates cycled at 5 Hz and 3 Hz
respectively, reveal areas of dense and sparse matrix cracking. At a maximum stress level
of 119.8 MPa, the [45/-45]s laminates failed anywhere from 100,000 to 600,000 cycles.
Specimens cycled at 3 Hz failed closer to 600,000 cycles while a frequency of 5 Hz would
see a specimen fail closer to 200,000 cycles. If the damage along the edge of the laminate
was extremely concentrated in a few places, the specimen failed early at the point of
concentrated damage. Tllustrated in Figures 13 (a) and (b) are photographs of the pattern of
matrix cracking as seen on the edge of the [45/-45]3 laminates.
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Quasi-isotropic laminates were fatigued at stress levels equal to about 60% of fiber
failure. The purpose of this was to create delaminations as well as transverse matrix
cracking in order to visualize and document the pattern of damage as well as predict
stiffness reductions and residual strengths up to the point of delamination onset. The
patterns of matrix cracking on the edge of quasi-isotropic laminates are illustrated in
Figures 14 (a) and (b), and Figures 15 thru 19 illustrate patterns of delamination as well as
matrix cracking. X-rays of damaged [0/45/-45/90] specimens subjected to fatigue loading
are shown in Figure 15. The two black splotches are just tabs and can be ignored. This
figure shows how at 100 cycles the damage is predominantly matrix cracking with the
damage initiating at the edge of the specimen and progressing toward the center. By
100,000 cycles, roughly 50% of the specimen is delaminated. At a stress level of 60%
fiber failure, it is evident delaminations initiate very early in the test. Laminates of the same
layup but with a centrally drilled hole are illustrated in Figure 16. There was axial splitting
at the hole within the first 100 cycles during these tests. The damage pattern around the
hole becomes recognizable at around 1,000 cycles with dense 90 degree matrix cracking in
the vicinity of the hole. At or near 20,000 cycles, edge delamination initiates and matrix
cracking only travels through the width of the specimen in the vicinity of the hole.
Delamination and matrix cracking continues to progress normally up through 100,000
cycles where the edge delamination becomes more severe, the axial split initiates
delamination at the hole, and the matrix cracks away from the hole are still not through the
entire width of the specimen. However, at 300,000 cycles, the matrix cracks have
progressed through the width of the laminate.

An x-ray of a laminate that has a transverse layup of the previously mentioned laminate
is given in Figure 17. Again, the matrix cracking is more dense and progresses further into
the width of the specimen at the vicinity of the hole. At 30,000 cycles, edge delamination
sets in and the delamination pattern at the hole is axial as well as in the 45 degree direction.
X-rays of 5.08 cm wide laminates with central notches and layups identical to the two
previously mentioned laminates are given in Figures 18 and 19. As expected, the damage

pattern is nearly identical to the previously discussed laminates.

Stiffness L oss

Stiffness measurements were actually more successful using the LVDT of the Instron
rather than the extensometer since it provided a gauge length of the entire specimen from
grip to grip. The normalized stiffness of the [0/90/0] laminates is given in Figure 20.
This plot reveals an average reduction in stiffness of approximately 0.5%. Revealed in
Figure 21 is an approximate 6% stiffness loss in the [0/90,/0]; specimens.
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The [45/-45],¢ specimens behaved a little more abnormal than the other layups. First of
all, as was mentioned in the Damage Quantification section, matrix cracking did not saturate
the entire length of the specimen. Instead, just one or two areas would saturate with matrix
cracking and then fail catastrophically. Secondly, the stiffness and shear modulus
increased until significant damage caused a sharp decrease in both stiffness and shear
modulus prior to failure, Figure 22. For the laminates cycled at 5 Hz, significant damage
started approximately at 10,000 to 40,000 cycles. A frequency of 3 Hz would slow the
damage initiation so that 50,000 to 100,000 cycles was the point of significant damage.
Furthermore, slight plastic deformation probably stretched the 45 degree plies such that the
45 degree ply orientation slowly shifted a few degrees toward the zero degree direction.
This shifting of plies, along with damage initiation at about 20,000 cycles could be a
possible explanation as to why the stiffness and shear modulus increased until 20,000
cycles.

The percentage drop in stiffness for the quasi-isotropics, with or without notches, were
generally higher. This is not only duc to their layup but also because the more severe
loading conditions caused damage to increase more rapidly. Furthermore, at the onset of
edge delamination, stiffness values really plunged. The laminates with centrally drilled
6.35 mm holes also experienced fairly steep reductions in stiffness, however, they were
more gradual since the delamination at the hole allowed for a less severe reduction in
stiffness at edge delamination onset. The stiffness loss for these specimens is illustrated in
Figures 23 thru 28. Currently, the model does not have a growth law for delamination.
There are empirical equations relating stiffness loss to delamination [12] as was shown in
Equation 7. The actual use of such formulations will be discussed in detail in the

"Analytical Results".

Residual Strength

The centrally notched quasi-isotropic laminates did not behave very differently
compared to the quasi-isotropics without the center drilled hole when measuring strength.
The damaged quasi-isotropic laminates appeared to increase in strength up to a certain
number of fatigue cycles. It appears that a decrease in strength is initiated by extremely
significant delamination, as seen in Figure 15. However, the unnotched laminates’
increase in strength prior to strength reduction is unexpected. Appendix A contains the
experimental values of the quasi-static strengths and the residual strengths.

The damaged centrally notched laminates fail at a higher stress than undamaged
laminates for a reason slightly complicated, but logical. An undamaged centrally notched

specimen experiences a high stress concentration around the hole. This stress
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concentration decreases with increasing damage around the hole, but for an undamaged
specimen being tested quasi-statically, delamination was virtually undetectable just prior to
failure. As damage accumulates due to fatigue, and axial splitting and delamination occur
around the hole, the stress concentration decreases until the stress distribution across the
width of the specimen is characteristic of an unnotched laminate. The residual strengths are
illustrated in Figures 29 thru 34.

ANALYTICAL RESULTS
1 Parameter Calculation

Before reviewing the model's computational predictions, an outline containing the
procedures used to calculate the model inputs from the experimental data would help keep
things in perspective. Figures 35 and 36 would be helpful in understanding this outline.
First of all, the internal state variables due to transverse matrix cracking, 022, had to be
calculated for each crack density measurement. A FORTRAN program, ALPHAM?22,
was written using Equation 12 and 13, [25, 22, 26], shown below.

022 = (12)

£=> > ! (13)
m n

Cozod2m-1F(2n-1 )2+C1212(%)2(2 n-1)

where p/2t is the far field stress in the 90 degree ply, 1/2a is the crack density, C2222 is
the transverse modulus, and C212 is the shear modulus. However, the far field stress in
that equation decreases with increasing transverse matrix cracking, therefore it had to be
recalculated for each internal state variable calculation. So what we have is an iterative
process between ALPHAM?22 and a static version of FLAMSTR called SLAMSTR, Static
LAMinate STRess. The static laminate stress program and the 022 calculation program
were later combined into an iterative program, SLAMALPHA22. This procedure is
illustrated in Figure 35.

Secondly, effort was made to determine doipo/ds by plotting 22 as a function of
crack surface area, Figure 37. The equation of the best fit curve was found, Equation 14,
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and its derivative provided the equation for dowpo/ds as a function of fatigue cycles,
Equation 15,

app = -1.57378x10-6+ (0.0002909)(s)+(1.224915x10-5)(s2)  (14)

dooo
ds

= 0.0002909 + (2.449830x10-3)(s) (15)
where s is the crack surface area. It was noticed that the fitted curve was very nearly linear,
which would result in a constant doipo/ds if a linear curve fit were used. As it turns out,
using a constant dopo/ds to find the parameters enhances the results. However,
dowo/ds obviously cannot be constant when used to find dpara, since dpara is the
average slope of dopo/ds vs the far field stress, SG2. This procedure is described as the
third element of parameter calculation. The determination of dpara is illustrated in the plot
of Figure 38.

The damage dependent strain energy release rate, G, could be calculated using Equation
16 since dopo/ds and SG2 is known over the given number of cycles. The ply
thickness, t, is actually the thickness of the consecutive ninety degree plies, i.e., t is equal
to two times the thickness of one ply for a [0/90,/0]¢ laminate, whereas t is equal to the
thickness of one ply in a [0/90/0]¢ laminate.

G = 1(%%22)s62) (16)

The fourth step was to plot 022 as a function of the number of cycles, N, as illustrated
in Figure 39. The derivative of the fitted curve, Equation 17, supplied Equation 18 for
daoo/dN.

opp = -4.806625x10-6+(3.49422x10-9)N-(4.77246x10-15)N2  (17)

dooo

aN = 3.49422x10°9 - (9.54492x10-15)N (18)
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Finally, rearranging the damage growth law equation, Equation 3, to the form

dooo/dN
—se —— _ T]
daoo/ds kG (19)
dooo/dN | _ .
d 012_2 /_ds is plotted as a function of the damage dependent strain energy release rate, G.

A power curve fit is assigned to the plot as shown in Figure 40. Thus we now have the
parameters dpara, K, and n. Referring to Appendix B may be helpful in the specifics of
the analysis and may further summarize the entire process just described. At this point, all
of the necessary parameters for the model are known. A list of all the data needed as model
input is in Table 9. This table is easily defined by Table 1.

hear and Delamination Variabl

To achieve an accurate prediction of stiffness and strength, mode I damage due to
shear and mode I damage due to delamination needs to be taken into account. Equation 7 is
used to calculate the delamination internal state variables. Classical laminate theory is used
to determine the stiffnesses of the sublaminates in order to calculate E* in Equation 7.
From those results the transformed stiffnesses of the sublaminates, QTI and Q]131’ were
determined. The percentages of delamination area to total surface area, S?D, are found from
the x-ray radiographs of the laminates. Tables 10 and 11 reveal the results of the
calculations involved for the unnotched quasi-isotropic laminates. It should be noted here
that the [90/-45/45/0]s laminates had four sites of delamination at the 90/-45 and -45/45
interfaces on both sides of the midplane. Delamination existed only at the 90/-45 interfaces
in the [0/45/-45/90] laminates. Appendix C should be referred to for any specifics in
internal state variable calculations.

The internal state variables due to shear are calculated from Equation 6. Since the
relationship between G12p/G1, and the number of cracks per ply is linear, and G12p/G120

=0.9182 for Sp = 22.5 cracks/ply, then the resulting equation is

ay = (0.0073 S)eg (20)

Supplied in Table 12 are the results of calculations used to determine the mode II internal

state variables. For further details of the analysis, refer to Appendix D.
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Predictions of Stiffnes

The three ingredients to predicting reductions in stiffness are the model parameters, a
knowledge of using the fatigue damage dependent laminate analysis program, FLAMSTR,
and a method by which to incorporate delamination and shear variables into the predictions.
Once the model parameters were found, using the model to predict stiffness due to
transverse matrix cracking in the 90° plies was done simply by inputting the parameters
into the program FLAMSTR and calculating from the output the reductions in stiffness
from the longitudinal midplane strains. This calculation is done by obtaining the initial
longitudinal midplane strain from running SLAMSTR with no damage, and dividing it by
the longitudinal midplane strain of each consecutive cycle from the output of FLAMSTR.
The plots in Figures 41 and 42 show the experimental and analytical comparisons in
stiffness for the [0/90/0] and [0/902/0], laminates. The analytical plot for the [0/90/0]s
laminate fit the experimental plot quite well as expected. This is expected not only because
of the results of previous research [5], but because the model parameters were calculated
from the [0/90/0]; laminate. Therefore, the output is a direct result of the input.

The analytical plot for the [0/90,/0] laminate did not fit the experimental plot as well as
the [0/90/0], laminate. This could possibly be due to the following three explanations.
First of all, the [0/902/0]s laminates could have experienced more plastic deformation than
the [0/90/0] laminates from where the prediction came. This plastic deformation would
cause a further decrease in stiffness whereas the model does not compensate for plastic
deformation. If the model were required to compensate for plastic deformation, the ply
level constitutive equations, Equation 2 would have to be modified to the following

equation,

M M
(ou) = [Q feL - o] -~ 0 gy} (21)

M. :
where At 19 the damage variable due to plastic deformation. Another reason for the

divergence in Figure 42 could be that since the [0/90/0]s laminates were several plies
thinner, thus suffering a higher degree of warpage, the parameters calculated from the
[0/90/0]s laminates could be causing the predicted reductions in stiffness to be a little low.
This could quite possibly happen if the warpage causes some non-uniform matrix cracking
where one ply does not suffer as much damage as the other ply because there may be
residual compressive stresses in that particular ply. This would decrease the calculated
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crack surface area, thus decreasing the damage variable calculations, and as a result, the
prediction in stiffness may seem slight. This could explain why the prediction fit the
[0/90/0]s laminate well and only fairly well for the [0/90,/0]¢ laminate. It's because the
slight prediction originated from the more warped [(/90/0] laminate and since the
[0/902/0]s laminate was less warped, the damage could have been more uniform causing a
higher reduction in stiffness. Finally, parameters were not calculated separately from the
[0/90,/0]s laminate data. These parameters could have been used to cross-check the
parameters calculated from the [0/90/0]s laminates. If this had been done, there might have
been a slight difference in the parameters, and averaging them could have brought the
analytical and experimental plots of the [0/90,/0]s laminates closer together. The reason
this was not done was because as was mentioned in the Damage Quantification section, the
damage shown in the x-rays became saturated to the point that it was impossible to detect
one crack from another.

The parameters and FLAMSTR were used to predict stiffness reductions due to
transverse matrix cracking in the 909 plies for the unnotched quasi-isotropic laminates as
well, Figures 43 and 44. However, the experimental stiffness decreased significantly due
to the damage in the 450 plies and at the onset of delamination. The model has empirical
formulations for damage variables due to delamination and shear. However these
delamination and shear internal state variables have not yet been incorporated into
FLAMSTR. Therefore, the following equations, Equations 22 thru 25 were used to predict
reductions in stiffness due to transverse matrix cracking, delamination, and shear.

Ex 1 AEM AED AES

B~ B B Ep %2
AED : . o
where E. IS defined by the following equation for any number of delamination sites as
0
[25]
AEY 14 d [aaDi\
> 1 15].11\—11 (23)

22



which can be reduced for two delamination sites by substituting Equation 7 into Equation
23 as

AED 1 E SD

Eq = 5(1 ) (24).
Stiffness loss due to shear is defined as [25]
AES k
atEx -1 Q { } o5
= > [a11k Yoo (25)

k=1

Illustrated in Figures 43 and 44 are the analytical reductions in stiffness compared to the
experimental stiffness loss for the quasi-isotropic laminates. It should be pointed out that
the x-rays and replicas that helped determine the delamination and shear damage variables
are from laminates other than the laminates actually used to measure stiffness and shear
modulus. Because the laminates have the same geometry, layup, and loading history, the
damage recorded is indicative of the damage causing the reductions in stiffness in the
laminates used only for measuring stiffness and shear modulus. The stiffness predictions

are shown in Appendix E.

Strength Predictions

The use of internal state variables provides a tool to homogenize the damage and
express it as an average of strain like quantities. Therefore, the result is a global strain
distribution which will not reach the ultimate failure strain as would a local strain
distribution. However, a qualitative analysis using only mode I matrix cracking did reveal
trends in damage, stress, and strain that are similar to the trends seen in the experimental
laminates.

A damage dependent finite element analysis code was used to predict local strains,
stresses, and mode I matrix cracking internal state variables in centrally notched laminates.
The finite element code utilized 3-node triangular elements, Figure 45, and the analysis
considered only mode I matrix cracking. The code will not be able to accurately simulate
fiber failure or mode I delamination until damage growth laws for these modes of failure
are developed. The analysis was attempted using a fiber failure routine (ply discount)
where an element's stress was set o zero if the strain in the 0 degree ply of that element
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exceeded the fiber failure strain. This analysis yielded extremely conservative results.
Since there is no fiber failure growth law, the strains and stresses in the 0 degree plies will
continue to increase.

Further results of the model reveal trends in damage growth that are similar to
experimental results. Figure 46 illustrates the transverse matrix crack growth in the 90
degree plies up to 100,000 cycles. Note the high density of matrix cracks near the hole.
Furthermore, the crack density at the hole appears to have reached a saturation level early in
the loading history, while away from the hole the crack density continues to increase. It
should be made clear here that the model is not capable of interpreting internal state variable
values into a numerical estimate of the number of cracks. The results in Figure 46 should
be interpreted simply as the number of cracks at the hole are larger than the amount away
from the hole, and the crack face displacements are more severe at the hole.

Illustrations of the model predictions are given in Figures 47, 48, and 49 for the 90
degree ply transverse crack growth shown in Figure 46. These figures are a visual
interpretation of the graph. They illustrate the decrease in crack density as the distance
away from the cut-out increases as well as the increase in crack growth with increasing
fatigue cycles. Here again, we have no indication as to how many cracks are in each
element, but we do know the number of cracks and the crack face displacements are more
severe at the hole.

Mode I matrix cracking in the O degree plies was less severe than in the 90 degree plies.
Illustrated in Figure 50 is an increase in crack density at the hole with an increase in fatigue
cycles. However, as the transverse distance away from the hole increases, the amount of
matrix cracking in the O degree plies quickly approaches zero. Similarly, Figure 51 is a
graph of matrix crack growth in the axial direction. This damage, known as axial splitting,
is more severe at the cut-out and quickly approaches zero as distance away from the cut-out
increases. The level of damage in the 0 degree plies at the cut-out is less severe than in the
90 degree plies because the crack face displacements are smaller in the 0 degree plies.
However, the graph shows the severity of damage increases at the hole as cycling
continues. The 0 degree matrix damage in the axial direction extends slightly further than
in the transverse direction representing an axial split.

Ilustrations of the model predictions are given in Figures 52, 53, and 54 for the 0
degree ply crack growth shown in Figures 50 and 51. The axial split seen in these figures
grows more dense as the cycles increase. The length of axial split does not grow nearly to
the extent as seen in the experiments, however the damage growth trend is similar.
Furthermore, these figures illustrate well the increase in crack face displacement with an

increase in fatigue cycles.
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DISCUSSION AND CONCLUSIONS

A progressive failure model based upon continuum damage mechanics, the continuum
damage model, has been studied and applied in this research to a toughened epoxy material
system, IM7/5260. The accomplished objectives for this research have helped develop and
verify certain conclusions pertaining to this model as well as to open new areas for
investigation to further develop this model toward the long term goal of residual strength
and life prediction for composite laminates.

Edge Replication and x-ray radiography were used to document the damage growth in
the IM7/5260 laminates. The x-rays and replicas were most helpful in verifying certain
patterns of damage growth as well as experimental and analytical results. One particular
example is the assumption of 90 degree transverse matrix cracks traversing the entire width
of the laminate. The x-rays proved this assumption to be invalid for this material system.
The x-rays were used to show which matrix cracks traversed the entire width of the
laminate and which cracks were only partially traversing the width of the laminate. So that
crack density measurements could still be useful in determining internal state variables, an
assumption was made to where the cracks were evaluated as percentages of full length
cracks. This may not be a very good assumption, however, the assumption did supply
reasonable internal state variables. Furthermore, since we don't really know the effects of
partial cracks on stiffness loss, the assumption is satisfactory for this particular instance.

Stiffness loss and residual strength were documented for the IM7/5260 composite
laminates. It was obvious in these experiments that the stiffness loss for the [0/90/0]
laminates was nearly trivial, but increased with an increase in the number of 90 degree plies
or a change in the stacking sequence as well as an increase in load. It was mentioned
earlier that stiffness was measured in specimens of the same geometry, stacking sequence,
and loading history as the specimens used for x-rays, but not the exact same specimen.
This is not a grave concern. Circumstances did not permit the use of a materials testing
machine located in an x-ray safe area. However, the documented damage is indicative of
the damage inducing stiffness loss.

The residual strength plots may seem a little odd. Much more residual strength data
should be collected before drawing conclusions. The residual strength data was plotted
mainly to document the behavior of the fatigued specimens. Discussed in the chapter titled
Experimental Results was the possibility that the specimens' warpage may have had a
stress relieving eftfect, thus affecting the residual strength. This is not necessarily an

explanation for the specimens’ behavior since residual ply stresses due to warping was not
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investigated in this research, but a suggestion that more data should be taken before making
conclusions about the residual strength for this material.

The transverse matrix cracking internal state variables were calculated via Equations 12
and 13, from which the damage growth law parameters were numerically determined.
Furthermore, the mode II matrix cracking and mode I delamination internal state variables
were calculated using empirical Equations 6 and 7. The growth law parameters were input
into a damage dependent constitutive code to predict stiffness due to mode I matrix cracking
in the 90 degree plies. The damage mode II matrix cracking and mode I delamination
variables were used in empirical Equations 22 thru 25 to predict stiffness loss due to shear
and delamination. These predictions combined provided a stiffness loss prediction for the
unnotched quasi-isotropic laminates.

A damage dependent finite clement analysis code was used to provide a qualitative
prediction of the mode I matrix cracking, stresses, and strains in each ply of the quasi-
isotropic laminates with circular cut-outs. The actual stiffness loss was not predicted since
this was a qualitative analysis designed to show the predicted trends in damage growth
were similar to the experimental trends. An accurate quantitative prediction was postponed
until further development. A quantitative residual strength prediction is not possible for
this model at this time.

Several conclusions can be made from this research. First of all, the continuum
damage model provides a fairly good prediction of stiffness loss for unnotched, quasi-
isotropic, IM7/5260 composite laminates due to mode I matrix cracking, mode II matrix
cracking, and mode I delamination. These predictions were shown in Figures 41 thru 44.
Secondly, the continuum damage model predicts damage growth, stresses, and strains in
all plies due only to mode I matrix cracking for quasi-isotropic, centrally notched,
IM7/5260 composite laminates. Granted, only the qualitative trends are comparable to
experimental results, but if fiber failure and mode I delamination are considered, the
predicted damage would quantitatively be comparable.

Further development is required for this model to eventually be able to predict life of a
laminated composite. Following is a brief list of objectives for future work and areas of
investigation that are necessary for further development.

* The effect on stiffness loss of transverse matrix cracks, which progress slowly from
the edge of the laminate, needs to be investigated for materials that are not brittle enough
such that the transverse matrix cracks traverse the entire width of the laminate. Perhaps a
correlation between crack density and partial matrix cracking can be developed. If so, a
new method by which to measure crack density may need to be developed.
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* A linear damage growth law for mode I matrix crack growth should be developed for
materials exhibiting linear matrix crack growth. This would significantly simplify the
analysis.

* Damage growth laws for mode II matrix cracking, mode I delamination, and fiber
failure need to be developed for accurately modelling damage growth and stress
redistribution.

* The damage dependent constitutive and finite element analysis codes need to be
upgraded to incorporate damage growth laws for fiber failure, mode II matrix cracking, and
mode I delamination.

In conclusion, the continuum damage model has the potential to become a useful tool to
predict life of laminated composites. If this progressive failure model can develop to the
point of actually predicting life using damage growth laws for all the modes of damage, it
will be a powerful tool.

Note: This report is the edited version of the Master's thesis written by Tim Coats.
This report is intended as a thorough reference for using the continuum damage model.
For more accurate data and a concise and professional presentation of the model, refer to
Coats, T.W. and Harris, C.E.,"Experimental Verification of a Progressive Damage Model
for IM7/5260 Laminates Subjected to Tension-Tension Fatigue," Journal of Composite
Materials, 1994 or 1995.
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Table | - Description of Input for the First Constitutive Module

Data

nplies
Q11,Q22,Q33,
Q12,Q13,Q66
iflag

Nx,Ny,Nxy
Mx,My,Mxy

t(i), theta(i)

alpham(i,2), alpham(i,&)

dpara, x, N

nci, ncf, ninc

iprnum, nsubic

njump, xfac

31

Description of Data

Number of Plies in Laminate
Transformed Ply Level Stiffness
Matrix

Damage Condition

Applied Forces and Moments

Ply Thickness and Orientation

Initial Values of Mode I and
Mode IT ISV for ply i

Slope of do/ds vs ©,
Growth Law Parameters

Initial Cycle Number,
Final Cycle Number,
Increments

Increments to Output,
Subincrements During Load
Change

Load Change Cycle Number,
Load Factor
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TABLE 2 - Specimens Used in Experimentation

Layup No. of Width Type of Notch Data Collected
Specimens and/or Calculated
[0/90/0]¢ 10 1" unnotched  Crack Density, Stiffness Loss
[0/902/0] 10 1" unnotched  Crack Density, Stiffness Loss
[45/-45]2¢ 10 1" unnotched  Shear Modulus
[0/45/-45/90]¢ 10 1" unnotched Stiffness Loss, Residual Str.
[0/45/-45/90] 10 1" 1/4" hole Stiffness Loss, Residual Str.
[0/45/-45/90] 5 2" 1/4" hole Stiffness Loss, Residual Str.
[90/-45/45/0]¢ 10 1" unnotched Stiffness Loss, Residual Str.
[90/-45/45/0]4 10 1" 1/4" hole Stiffness Loss, Residual Str.
[90/-45/45/01 5 2" 1/4" hole Stiffness Loss, Residual Str.
Table 3 - Ply Level Properties of IM7/5260 @ 23 Degrees Celsius

Ell= 152.8 GPa (22.162 Msi)

E22= 8.7 GPa ( 1.262 Msi)

Gl2= 5.2 GPa ( 0.754 Msi)

Poisson's Ratio = 0.3

Table 4 - Components of the Transformed Ply Stiffness Matrix

Qll= 167.9 GPa (24.354 Msi)

Q22 = 9.6 GPa ( 1.392 Msi)

Q12 = 2.9 Gpa ( 0.42]1 Msi)

Q66 = 52 GPa (0.754 Msi)
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Longitudinal
Engineering
Modulus

First Ply

Failure Load

First Fiber

Failure Load

Longitudinal
Engineering
Modulus

First Ply

Failure Load

First Fiber

Failure Load

Table 5 - Initial Data for IM7/5260 [0/90/0]g Laminates

Theoretical Experimental
15.250 Msi 15.430 Msi
105.145 Gpa 106.386 Gpa
4.395 kip 4.000 kip
19.549 kN 18.126 kN
9.900 kip 8.325 kip
44,037 kN 37.031 kN

Table 6 - Initial Data for IM7/5260 [0/902/0]s Laminates

Theoretical Experimental
11.758 Msi 12.305 Msi
81.068 GPa 84.840 GPa

4.324 kip 4.000 kip
19.234 kN 17.882 kN
9.783 kip 8.000 kip

43.517 kN

35.586 kN



Longitudinal
Engineering

Modulus

First Ply

Failure Load

First Fiber

Fatilure Load

Longitudinal
Engineering
Modulus

First Ply

Failure Load

First Fiber

Failure Load

Table 7 - Intial Data for IM7/5260 [45/-45]»¢ I.aminates

Theoretical Experimenial
2.684 Msi 2.949 Msi
18.505 GPa 20.333 GPa
.256 kip 1 155 kip
5.587 kN 5.138 kN
2.000 kip
8.896 kN

Table 8 - Initial Data for IM7/5260 [0/45/-45/90]s Laminates

Theoretical Experimental
8.426 Msi 8.030 Msi
58.095 GPa 55.365 GPa
3.125 kip 2.400 kip
13.901 kN 10.676 kN
7.070 kip 3.500 kip
31450 kN 15.569 kN
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Ql1

Q22

Ql2

Table 9
[0/90/0]5 Input Data for the Constitutive Model

nplies: 6
= 167.799 GPa Q13 =
= 24.354 Msi =
= 9.591 GPa Q33 =
= 1.392 Msi =
= 2.901 GPa Q66 =
= 0.421 Msi =
iflag: 1
= 14.240 kN Mx =
= 3.200 kip
= 0 My =
= 0 Mz =

Ply Thickness: 0.1524 mm (0.006 inches)
Ply Orientation: [0/90/0]g

alpham(i,2) =0  alpham(i,8) =0

2.901 GPa
0.421 Msi
9.591 GPa
1.392 Msi
5.195 GPa
0.754 Msi

dpam = 3.4214x10°8 (S]]
= 3.8686 x10-7 [English]
k = 77746 h = 5523 [sn]
= 1.1695 = 5.5109 [English]
nci: 0 ipmum: 10000
ncf: 100000 nsubic: 200
ninc: 100000 njump: 100001

xfac: 1
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Table 10
Delamination Internal State Variable Results for
Unnotched [0/45/-45/90]¢ Laminates

Cycle Sy/S (%) ex als.)
10000 2.0 0.0086 0.0011
20000 21.0 0.0090 0.0117
40000 40.0 0.0091 0.0224
60000 44.0 0.0092 0.0247
100000 48.0 0.0092 0.0273
Table 11
Delamination Internal State Variable Results for
Unnotched [90/-45/45/0]g Laminates
Cycle S3d/S (%) ex 313)1 a,I;Z
10000 3.13 0.0082 0.0011 0.0002
50000 12.50 0.0089 0.0043 0.0010
100000 20.00 0.0091 0.0068 0.0015
Table 12
Shear Internal State Variable Results
from [45/-45]25 Laminates
. M
Cycle G12 (Msi) €6 S ag
25000 0.966 0.0086 6416 0.000403
50000 0.957 0.0087 10.667 0.000677
100000 0.887 0.0094 22.500 0.001544
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Current Damage State
Structural Configuration
Loading Condition

'

‘____.. Damage Dependent Laminate Analysis
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Global Structural Analysis
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I Ply Level Elemental Stress Analysis

Y
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'

Update Damage State

Laminate
Failure ?

Figure 1 - Progressive Failure Scheme
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25% of 1 Crack

25% of 1 Crack 25% of 1 Crack

50% of 1 Crack

75% of 1 Crack

1 Crack

Total number of cracks = 3

Figure 2 - Schematic of Transverse Matrix Cracking
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200000
Cycles

Figure 3 - X-Rays of Damaged [0/90/0]s Specimens
Subjected to Fatigue Loading.
Max Stress = 479 MPa, R = 0.1, f = 5 Hz

39



I |lcm
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Figure 4 - Sectioning of a [0/902/0]s Laminate Subjected
to Tension-Tension Fatigue.

Max Stress = 479 MPa, R=0.1, f=5Hz
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Figure 5 - Sectioning of a [0/902/0]s Laminate Subjected
to Tension-Tension Fatigue.
Max Stress = 479 MPa, R=0.1, {=5Hz
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100000 A
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Figure 9 (a) - Sectioning of a [45/-45]2s Laminate
Subjected to Fatigue Loading.
Max Stress = 120 MPa, R=0.1, f=5 Hz
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Figure 9 (b) - X-Ray of a Damaged [45/-45)2s Laminate Subjected
to Fatigue Loading Just Prior to Catastrophic
Failure. Max Stress = 120 MPa, R=0.1, f=3 Hz
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Figure 12 -Matrix Cracking of Ninety Degree Plies of a
[0/90/0]s IM7/5260 Composite Laminate
Magnified 400x
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Figure 13 -Matrix Cracking in the [0/45/-45/90]s
IM7/5260 Composite Laminate Magnified 100x
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Composite Laminate Magnified 50x
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Figure 16 - X-Rays of Damaged 2.54 cm Wide [0/45/-45/90]s
Centrally Notched Laminates Subjected to Fatigue
Loading. Max Stress = 494 MPa, R=0.1, f=5 Hz
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IM7/5260 Laminated Composite With Central 6.35 mm Hole
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2.54 cm Wide Laminated Composite
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Figure 31 - Experimental Residual Strength ofa[0/45/-45/90]s 2.54 cm Wide
IM7/5260 Laminated Composite With Central 6.35 mm Hole
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Figure 32 - Experimental Residual Strength of a[9 0/—45/45/0]s 2.54 cm Wide
IM7/5260 Laminated Composite With a Central 6.35 mm Hole
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STATIC TESTS:

Specimen

A03
AOB
A05
103
08
Bo3
BO4
B-1
B-2
co3
Cos
F03

Fo8

APPENDIX A

EXPERIMENTAL DATA

Layup

[0/90/0]s
[0/90/0]s
[0/90/0]s
[0/90,/0]s
[0/90,/0]s
[45/-45]54
[45/-45],
[45/-45),,
[45/-45]5,
[0/45/-45/90]s
(0/45/-45/90]s
[90/-45/45/0]s

[90/-45/45/0]s

Young's
Modulus
(GPa)

100.5
106.3
102.2
86.0
83.7
20.8
19.9
23.8
23.5
55.0
51.0
56.8

58.7

97

First Ply First Fiber

Failure
Load
(kN)

17.9
18.0
17.8
i7.9
17.8
N/A
4.5

N/A
N/A
N/A
N/A
N/A

N/A

Fallure
Load
(kN)

24.7
37.0
36.9
29.6
34.5
N/A
8.9
N/A

N/A

15.6

15.6

Ultimate
Strength
(MPa)

1063.5
1593.1
1588.8
1105.8
11141
N/A
298.2
N/A
N/A
761.6
819.1
883.7

968.5

Shear
Modulus
(GPa)

N/A
N/A
N/A
N/A
N/A
N/A
N/A
6.2

6.2

N/A
N/A
N/A

N/7A
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FATIGUE TESTS: Crack Density Data From Edge Replicas (Number of Cracks/Ply/Inch)
0/90/0]s Damage in 90 Degree Plies Only ~ Max Stress: 612 MPa R: 0.1 f: 3Hz (A04,Ab03), 5Hz (Ab01)

'0/902/0}s Damage in 90 Degree Plies Only  Max Stress: 453 MPa R:0.1. f:3Hz

[45/-45]2 s  Damage in all Plies Max Stress: 115 MPa R: 0.1 f: 3Hz (B01), 5Hz (B-3)
Specimen: A04 AboO1 Ab03 jo1 109 110 BO1 B-3
Layup:  [0/90/0]s [0/90/0]s [0/90/0]s [0/902/0]s  [0/902/0]s [0/90,/0]s [45/-45]35 [45/-45]2
Crack Crack Crack Crack Crack Crack Crack Crack
Cycle No. Density Density Density Density Density Density Density Density
0 0 0 0 0' o 0 0 0
100 16.833 22.667 1.000 25.667 6.667 25.833 0 0
500 17.333 40.667 11.667 37.000 21.333 37.167 0 0
1000 20.833 55.000 18.667 43.500 38.333 51.167 0 0
5000 26.000 63.333 26.167 55.833 53.333 59.500 0 0
10000 33.300 66.500 33.167 69.687 63.333 70.833 0.292 0.958
20000 40.833 71.333 37.167 71.833 N/A 73.333 N/A 4,583
40000 44,167 72.167 43.000 75.333 76.667 77.167 N/A N/A
50000 N/A N/A N/A N/A N/A N/A 1.167 10.667
60000 45.833 74.667 44.833 85.000 79.500 80.000 N/A N/A
80000 50.667 75.167 45.333 88.333 . 83..333 83.500 N/A N/A

100000 51.500 76.167 48.333 88.833 84.167 84.167 2.083 22.5
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FATIGUE TESTS: Stiffness Loss From Extensometer and LVDT for Laminates Without Notches
Loads are the same as previously mentioned
f: 3Hz (A09, 104, 106), SHz (Ab07, B-1, B-2)

Specimen A09 Ab07 Ab10 104 106 B-1 B-2
Layup [0/90/0]s [0/90/0]s [0/90/0]s [0/90,/0]s [0/90,/0]s [45/-45]35 [45/-45]25
Cycle No. Ex (GPa) Ex (GPa) Ex (GPa) Ex (GPa) Ex (GPa) Ex (GPa) Ex (GPa)
0 91.051 122.812 106.843 74.081 91.858 23.839 23.509
50 N/A N/A N/A 72.772 91.665 N/A N/A
100 91.065 122.098 106.719 72.200 92.195 N/A N/A
500 N/A 121.884 106.561 71.043 91.837 N/A N/A
1000 91.086 121.767 106.402 70.912 91.692 N/A 24.363
5000 90.893 121.588 106.168 70.319 90.156 N/A 24.680
10000 90.438 121.485 105.927 69.989 88.943 24.797 24.749
20000 N/A 121.071 106.223 69.727 88.530 N/A N/A
25000 N/A N/A N/A N/A N/A 25.121 24.894
40000 89.956 120.975 105.851 69.320 88.440 N/A N/A
50000 N/A N/A 106.044 N/A N/A 24.832 22.916
60000 90.080 121.092 N/A 68.969 88.695 N/A © N/A
75000 N/A N/A N/A N/A N/A N/A N/A
80000 89.825 121.044 N/A 68.776 N/A N/A N/A
100000 89.963 121.044 N/A 68.728 89.011 23.295 N/A
200000 89.963 120.906 N/A N/A 88.344 N/A N/A
300000 N/A N/A N/A 68.597 N/A N/A N/A
400000 89.549 N/A N/A 68.562 87.138 N/A N/A

500000 N/A N/A N/A N/A N/A N/A N/A
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FATIGUE TESTS: Stiffness Loss From Extensometer and LVDT for Laminates Without Notches
Max Stress: 474 MPa R: 0.1

Specimen
Layup

Cycle No.

o
50
100
500
1000
5000
10000
20000
40000
60000
80000
100000
500000

Co4
[0/45/-45/90]s

Ex (GPa)

61.025
60.680
60.825
60.370
60.026
59.578
58.875
57.187

co7
[0/45/-45/90]s

Ex (GPa)

56.009
56.023
56.133
55.554
55.554
55.313
54.548

f: 5Hz

cog
[0/45/-45/90]s

Ex (GPa)

55.285
54.403
54.231
53.597
53.411

cos
(0/45/-45/90]s

Ex (GPa)

79.173
66.930
67.164
65.627
62.368

c10
[0/45/-45/90]s

Ex (GPa)

55.120
N/A
55.347
55.120
55.754
54.403
53.473
N/A
51.896
51.751
51.868
51.241
49.711
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FATIGUE TESTS: Stiffness Loss From Extensometer and LVDT for Laminates Without Notches

Specimen
Layup

Cycle No.

0
50
100
500
1000
5000
10000
20000
40000
60000
80000
100000
500000

Max Stress: 553 MPa R:0.1 f:5Hz

Fo1 Fo4 F10
(90/-45/45/0]s [90/-45/45/0]s [90/-45/45/0]s

Ex (GPa) Ex (GPa) Ex (GPa)
55.382 61.025 55.155
N/A N/A N/A
N/A 59.991 N/A
N/A : 55.961 N/A
5§3.439 55.940 54.817
52.674 55.341 54.128
51.723 54.927 53.384
N/A 54.052 52.336
50.311 54.038 51.083
48.292 53.604 N/A
N/A 51.585 51.386
45,405 50.258 49.815
N/A 41.788 46.184
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FATIGUE TESTS: Stiffness Loss From Extensometer and LVDT for Laminates With Central Circular Cut-QOuts
Do4 G05 E03

Specimen
Layup

Cycle No.

0
50
100
500
1000
5000
10000
20000
40000

60000

80000
100000
500000

Specimen:
Max Stress: -

Do4
[0/45/-45/90]s

Ex (GPa)

60.747
N/A
N/A
N/A

59.667

59.413

59.220

58.999

58.627

58.338

58.062

57.649

355 MPa 415 MPa

GOo5
(90/-45/45/Q]s

Ex (GPa)

61.080
N/A
N/A

60.722

60.687

60.102

59.716

59.289

58.958

58.365

55.926

E03
[0/45/-45/90]s

Ex (GPa)

58.737
N/A
58.841
58.703
58.600
58.289
58.117
57.394
56.601
56.119
55.602
55.189
50.952

414 MPa

E04
414 MPa

E04
[0/45/-45/90]s

Ex (GPa)

57.773
N/A
57.635
57.566
57.428
57.153
56.774
56.291
55.706
55.217
54.714
54.383

Ho2

414 MPa

Ho2
[90/-45/45/0]s

Ex (GPa)

66.599
N/A
65.965
65.703
65.496
65.117
64.959
64.711
64.277
64.153
63.919
63.739
62.265
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FATIGUE TESTS: Strength Measurements of Laminates Without Notches

Specimen
Layup

Cycle No.

1000
10000
20000

500000

Max Stress: 474 MPa R: 0.1 f:5Hz

cog : Co5 co7 co2 co4 c1o
[0/45/-45/90]s [0/45/-45/90]s [0/45/-45/90]s [0/45/-45/90]s [0/45/-45/90]s [0/45/-45/90]s

Su MPa Su MPa Su MPa Su MPa Su MPa Su MPa

813.316 751.906
856.007 793.845
832.043
764.638
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FATIGUE TESTS: Strength Measurements of Laminates Without Notches

Specimen
Layup

Cycle No.

1000
100000
500000

1000000

Max Stress: 553 MPa R:0.1 f:5Hz

Fo2 Fo1 FO7 Fo4 FO5
[90/-45/45/0]s [90/-45/45/0]s [90/-45/45/0]s [90/-45/45/0]s [90/-45/45/0]s

Su MPa SuMPa SuMPa Su MPa Su MPa

973.736
768.387 795.947
727.494
658.291
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FATIGUE TESTS: Strength Measurements of Laminates With Central Circular Cut-Outs
Max Stress: 355 MPa R: 0.1 f:5Hz

Specimen Do9 ' Do4 Dos
Layup [0/45/-45/90]s [0/45/-45/90]s [0/45/-45/90]s
Cycle No. SuMPa Su MPa Su MPa
50000 494.881
100000 454 .885

500000 527.981



901

FATIGUE TESTS: Strength Measurements of Laminates With Central Circular Cut-Outs
Max Stress: 415 MPa  R: 0.1 f: S5Hz

Specimen Go3 4 Go7 G10 Go6 Go4
Layup [90/-45/45/0]s [90/-45/45/0]s (90/-45/45/0]s [90/-45/45/0]s [90/-45/45/0]s
Cycle No. SuMPa Su MPa Su MPa Su MPa Su MPa
1000 526.637 496.376
5000 532.321
15000 574.564
537.868

30000
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FATIGUE TESTS: Strength Measurements of Laminates With Central Circular Cut-Outs
Max Stress: 414 MPa R: 0.1 f: 5Hz

Specimen HO5 ‘ Ho3 Ho1 Ho2
Layup [90/-45/45/0]s [90/-45/45/0]s [9G/-45/45/0]s [9G/-45/45/0]s
Cycle No. Su MPa Su MPa Su MPa Su MPa
50000 713.735

100000 697.778

500000 774.422 830.307
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FATIGUE TESTS: Strength Measurements of Laminates With Central Circular Cut-Outs
Max Stress: 414 MPa R: 0.1 f: SHz

Specimen E02 . E04 E01 EO3
Layup [0/45/-45/90]s [0/45/-45/90]s [0/45/-45/90]s [0/45/-45/90]s
Cycle No. Su MPa SuMPa Su MPa Su MPa
50000 710.400
S 100000 715.961

500000 726.571 757.473



APPENDIX B
GROWTH LAW PARAMETER CALCULATIONS

1. Calculate crack density (p) using 90 degree matrix cracking data from x-rays. The

90 degree matrix cracking data from x-rays was taken over 3 inches (7.62 cm) of the
specimen's length.

Definition: 100% crack is a 90 degree matrix crack that traverses the entire width of
the specimen.

Formulas: + Total Cracks = (No. of 100% cracks) + (3/4)(No. of 75% cracks)

+ (1/2)(No. of 50% cracks) + (1/4)(NO. of 25% cracks)
* p = No. of cracks/ply/inch

* s = (p)(ply thickness)(specimen width)(2 crack faces)

Specimen : Ab02

Layup : [0/90/0]s
Crack  Crack Surface Area,
100% 75% 50% 25% Total Density, , s

Cycle Cracks Cracks Cracks Cracks Cracks P English SI

500 0 0 0 0 0 ] 0 0

1000 0 0 0 0 0 0 0 0
5000 0 0 0 5.5 1.375 0.2292 0.0028 0.0181
10000 0 0 0 30.5 7.625 1.2708 0.0153 0.0988
50000 0 6 25 114 45,500 7.5833 0.0910 0.5874
100000 11 13 48 116.5 73.875 12.3125 0.1478 0.9540

109



2. Calculate agﬁz (N) via formulas 12 and 13 and the static damage dependent

constitutive code SLAMALPHA22.
Note: uglz (N) Is the same in English units as it Is in Sl units.

Cycle uyz

500 0
1000 0.00002335
5000 1.679686-6
10000 0.00002335
50000 0.00017483
100000 0.00028645

M
3. Plot azﬁz vs. crack surface area to obtain a second order polynomial azz(s).

English: a';”?_ = ©+0.001877(s)+0.0005098(s)?

SI: ayy = c+0.0002909(s)+1.224915 x 10°5(s)?

4. Take the derivative of ag‘z(s) with respect to s to get da';zlds.

M
da22
English Units: & = 0.001877+0.0010196(s)
M
d0L22

Sl Units —— = 0.0002909+2.44983 x 1075(s)
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5. Plot a(M,22) vs the number of cycles, N.

oy(N) = ©+3.49422 x 10°9(N)-4.77246 x 107 15(N)

6. Take the derivative of uzlz(N) with respect to N 1o get dag‘z/dN

M
dog,
N

g = 3.49422 x

10"%.9.54492 x 10" 15(N)

7. Plot dag‘z/ds vs far field stress () to get the parameter DPARA.

English Unlls:
Cycle

500
1000
5000
10000
50000
100000

S| Units:
Cycle

5000
10000
50000

100000

da/ds (inlins)

0.0018770
0.0018770
0.0018798
0.0018925
0.0019698
0.0020276

da/ds (cm/cms)

0.00029133
0.00029331
0.00030528
0.00031425

English Units:

o (Ib/in)

7334.9
7334.9
7332.7
7303.5
7099.7
6949.5

o (kN/cm)

12.847
12.796
12.438
12.175

DPARA = 3.8686 x 107/

SI Units: DPARA = 3.4214 x 10°8
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da/dN

8. Piot dazds VS strain energy release rate (G) to get the other parameters, K and 1
where G = (ply thickness)(o)(do/ds).
English Units:
Cycle da/dN G
dol/ds
1000 1.756320-6 0.087711
5000 1.72936-6 0.087684
10000 1.70548-6 0.087335
50000 1.51386-6 0.084898
100000 1.2743e-6 0.083102
Sl Units:
Cycle do/dN G
da/ds
1000 1.1311e-5 0.056973
5000 1.1157e-5 0.057038
10000 1.1002e-5 0.057197
50000 9.7662e-6 0.057870
100000 8.22130-6 0.058310

English Units: x = 1.2055, n = 5.5231
Sl Units: K = 7.7746, 1 = 5.5231

dou

- |
for do dsKG N
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APPENDIX C
MODE | DELAMINATION INTERNAL
STATE VARIABLE CALCULATIONS

n = No. of plies in laminale
Sp/S = ratio of delaminalion area to tolal area

Exo = Young's Modulus of undamaged laminate
d+1

o 1
E "TEE"'

1. Calculate the delamination variables for a [0/45/-45/90)s laminate.

Delamination exists primarily between the 90 and -45 degree plies, therefore there are
two delamination sites and 3 sublaminales where
ty = 0.018" (0.0457 cm)
I = 0.012" (0.0305 cm)
13 = 0.018" (0.0457 cm)
Furthermore, t = (8 plies)(0.006") = 0.048" (0.1219 cm)

Concerning Qqs, for two delamination sites and three sublaminates,
1, A _B
Q15 =5(Q14+Qyy)

where Qf“ and 0?1 are the transformed stiffnesses of the sublaminales

formed by lhe delaminations.
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Since the laminate Is symmelrical,

g45°/-45°/0°
Q. = q#5°%-45°%10° 11

11 = =
11 1-vi2va1
£45°/-45°/0°

11
0.91

= 4610 Ksl (31.763 MPa)

0
. £90%
B 90°, 11
Qyq = =
11 1-vi2vaoi

= 1343 Ksi (9.253 MPa)

[0/45/-45/90]s nf2 =4, Exo = 8.033 Msi (55.347 GPa)
o} 0 ] 0 [¢] (o]
E* = 5075 0‘48,(5‘;1'45 -457)(0.018")+(E0 2)(0.0127)+ (E745/45707) (0.018")]

E* = 3.462 Msl (23.853 GPa)

D (8.033 Msli -3.462 Msi)Sp
Therefore, g =4 2 976 Msi g Ex

Cycle Sp/S (%) Ex ay

10000 2.0 0.0086 0.0011
20000 21.0 0.0090 0.0117
40000 40.0 0.0091 0.0224
60000 44.0 0.0092 0.0247
100000 48.0 0.0092 0.0273
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2. Calculate the delamination variables for a [90/-45/45/0]g laminate.

Delamination exists primarily belween the 90 and -45 degree plies as well as the 45
and -45 degree plies, therefore there are four delamination sites and 5 sublaminates
where

ty = 0.006" (0.0457 cm)

t2 = 0.006" (0.0305 cm)

t3 = 0.024" (0.0457 cm)

14 = 0.006" (0.0457 cm)

ts = 0.006" (0.0305 cm)

Furthermore, t = (8 plies)(0.006") = 0.048" (0.1219 cm)

905 _pEx-E'Sp
aex 2 Q15| S

905, _nEx-E'Sp
Je, 2 Qs, S

Concerning Qis, for four delamination sites and five sublaminates,

i A B
Qis, =5(Q1+Qyy)

1. B _C
Qis, =5(Qy+Qq )

where Oﬁ and 0?1 are the transformed stiffnesses of the sublaminates

formed by the delaminations.

Since the laminate I1s symmetlrical,
EQOO
o]

Q’l:1 = 090 - — 11
11 1-vyavay

0

EQO

11

T 0.91
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= 1387 Ksi (9.556 MPa)

o]
E45
° _ 11
11 1-viavay
E45°
11
0.91

= 2057 Ksi (14.173 MPa)

45°/0°
Q°. o qestne® 11
" 1 1-vi2va,y

g45°/0°
11
0.91

= 13.351 Msi (91.988 MPa)

[90/-45/45/0]5. 2 = 4, Exo = 8.4 Msl (57.876 GPa)

: ! 90° " 45° "4 (E45°/0° .
E 0.048"[2(511 1(0.006 )7+2(E 11 }(0.006 )+(E1‘| 1(0.024")]

E* = 6.858 Msl (47.252 GPa)

D (8.400 Msi-6.858 Msi) S

Therefore, a31 = 4 1.722 Msi g Ex
D (8.400 Msi-6.858 Msi) S
Therefore, a31 =4 1.725 Msi g &x
Cycle Sp/S (%) Ex ag 0‘[3)
1 2
10000 3.13 0.0082 0.0011 0.0002
50000 12.50 0.0089 0.0043 0.0010
100000 20.00 0.0091 0.0068 0.0015
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APPENDIX D

MODE Il MATRIX CRACKING INTERNAL

STATE VARIABLE CALCULATIONS

1. Calcuiate p using matrix cracking data from edge replicas of a [45/-45]o¢

specimen.
Specimen: B-3 Specimen: B-2
Layup: [45/-45]o¢ Layup: [45/-45]o¢
Max Stress: 114 MPa R: 0.1 f. 5Hz
No. of
Cycle Cracks Y Cycle G2 (GPa)
10000 23 0.9583 10000
15000 64 2.6670 15000
20000 110 4.5830 20000
25000 154 6.4160 25000 6.656
50000 256 10.6670 50000 6.594
100000 540 22.500 100000 6.111

2. The relationship between Gi2d/G120 and p s linear, lherefore

Giad
== = 0.9182 for pg = 22.5
Gi2o T Pd

Therefore,
dop _ 2(1-0.9182)-P—
Ot 22.5

998 _ 0.0073 p

Jeg
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Furthermorae,

Cycle

25000
50000
100000

€s

G2 (GPa)

0.966
0.957
0.887

g = (0.0073 p)eg

118

and
Ox 114.836 MPa
“2G12”  2Gy2
€6 P
0.0086 6.416
0.0087 10.667
0.0094 22.5

ag

0.000403
0.000677
0.001544



APPENDIX E
STIFFNESS LOSS CALCULATIONS DUE TO
SHEAR AND DELAMINATION VARIABLES

Stiffness loss due 1o matrix cracking and delamination:

Ex AEM AED AES

— = 1-

BT Bk B B

where A? Is delined by the following equation for any number of delamination sites as

D d
4Ex .1l 3 [015]m{—3—a°‘ '}
Eo TEol=1 - exx

Stiliness loss due to shear is defined as

dag

S n
8EX - 1 ¥ [ay1k
deg

Eo nEo k=1

which for a [45/-45])2s laminate Is

S
8EX - 7 (1.872 Ms]) 3_0‘&}
Eop B8E, deg
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Stiffness loss for a [0/45/-45/90]s laminate with two delamination sites:

sEM it

Cycle Sp/S (%) Eo deg VI(AE\,Eq)
20000 21.0 0.0160 0.0468 0.9147
50000 42.0 0.0175 0.0779 0.8440
100000 48.0 0.0190 0.1643 0.8109

120






Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
ey T e
T ot 1 e s o Mansgeenent and B, Bapuraor Reducaon Proses (0704.0168), Washigion. DO 20805, 12! 1204 Artgeon,
1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1994 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Experimental Verification of a Progressive Damage Model for Composite

Laminates Based on Continuum Damage Mechanics C NAS1-19858
6. AUTHOR(S) WU 505-63-50-04

Timothy William Coats

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . REPORT NUMBER
Old Dominion University
P.O. Box 6369

Norfolk, VA 23508-0369

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING / MONITORING
. . . . AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Langley Research Center
oey NASA CR-195020

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: lvatury S. Raju - Final Report
This report is the edited version of the Masters thesis written by Tim Coats.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited

Subject Category 24

13. ADSTRACT (Maximum 200 words)

Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the
ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to
experimentally verify the application of the continuum damage model, a progressive failure theory utilizing
continuum damage mechanics, to a toughened material system. Damage due io tension-tension fatigue was
documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to
calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A
damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits,
and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the
experimental data and it was concluded that the continuum damage model provided a good prediction of
stiffness loss while qualitatively predicting damage growth in notched laminates.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Composites; Graphit/epoxy; Damage; Matrix cracks; Delamination; Intemal state 121
variables 16. PRICE CODE
A06
17. SECURITY CLASSIFICATION  |18. SECURITY CLASSIFICATION  |19. SECURITY CLASSIFICATION  |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassitied Unclassified

-280-5500 ) ) Standard Form 288 (Rev. 2-89
NSN 7540-01-280- Preecrbed by ANSI Std. (73;-"18 )

29R-102



